Microbial Diversity of Browning Peninsula, Eastern Antarctica Revealed Using Molecular and Cultivation Methods
نویسندگان
چکیده
Browning Peninsula is an ice-free polar desert situated in the Windmill Islands, Eastern Antarctica. The entire site is described as a barren landscape, comprised of frost boils with soils dominated by microbial life. In this study, we explored the microbial diversity and edaphic drivers of community structure across this site using traditional cultivation methods, a novel approach the soil substrate membrane system (SSMS), and culture-independent 454-tag pyrosequencing. The measured soil environmental and microphysical factors of chlorine, phosphate, aspect and elevation were found to be significant drivers of the bacterial community, while none of the soil parameters analyzed were significantly correlated to the fungal community. Overall, Browning Peninsula soil harbored a distinctive microbial community in comparison to other Antarctic soils comprised of a unique bacterial diversity and extremely limited fungal diversity. Tag pyrosequencing data revealed the bacterial community to be dominated by Actinobacteria (36%), followed by Chloroflexi (18%), Cyanobacteria (14%), and Proteobacteria (10%). For fungi, Ascomycota (97%) dominated the soil microbiome, followed by Basidiomycota. As expected the diversity recovered from culture-based techniques was lower than that detected using tag sequencing. However, in the SSMS enrichments, that mimic the natural conditions for cultivating oligophilic "k-selected" bacteria, a larger proportion of rare bacterial taxa (15%), such as Blastococcus, Devosia, Herbaspirillum, Propionibacterium and Methylocella and fungal (11%) taxa, such as Nigrospora, Exophiala, Hortaea, and Penidiella were recovered at the genus level. At phylum level, a comparison of OTU's showed that the SSMS shared 21% of Acidobacteria, 11% of Actinobacteria and 10% of Proteobacteria OTU's with soil. For fungi, the shared OTUs was 4% (Basidiomycota) and <0.5% (Ascomycota). This was the first known attempt to culture microfungi using the SSMS which resulted in an increase in diversity from 14 to 57 microfungi OTUs compared to standard cultivation. Furthermore, the SSMS offers the opportunity to retrieve a greater diversity of bacterial and fungal taxa for future exploitation.
منابع مشابه
Plankton diversity and aquatic ecology of a freshwater lake (L3) at Bharti Island, Larsemann Hills, east Antarctica
The Larsemann Hills range is an ice-free oasis on the Ingrid Christensen Coast of Princess Elizabeth Land, East Antarctica, which includes Bharti Island, Fisher Island, McLeod Island, Broknes Peninsula, Stornes Peninsula, and several other islands, promontories, and nunataks. The Larsemann Hills is an ice-free area of approximately 50 km2, located halfway between the Vestfold Hills a...
متن کاملGenetic Diversity of Bread Wheat (Triticum aestivum L.) Genotypes Using RAPD and ISSR Molecular Markers
The importance of grain cultivation especially wheat is obvious in terms of providing human and animal food and its impact on the economy of human societies. The reduction of genetic diversity in cultivars prevents increasing yields in line with rising demand and consumption. Therefore, it is necessary to improve the compatibility of them and increase their genetic extent. In the current, the g...
متن کاملجداسازی باکتریهای بومی تولید کننده آنزیم کلسترول اکسیداز از خاک، آب ، پساب کارخانه های چرم و پوست ، صابون سازی و فراورده های لبنی
Background : Cholesterol oxidase (CHO) is an enzyme that catalyzes cholesterol oxidation and produces hydrogen peroxide (H2O2). This enzyme is produced by certain pathogenic and non-pathogenic microorganisms and is a commercially important enzyme in the world which has found wide application in various industries. The aim of the study was to isolate native bacteria producing CHO and their ident...
متن کاملAmplicon-Metagenomic Analysis of Fungi from Antarctic Terrestrial Habitats
In cold environments such as polar regions, microorganisms play important ecological roles, and most of our knowledge about them comes from studies of cultivable microorganisms. Metagenomic technologies are powerful tools that can give a more comprehensive assessment of microbial communities, and the amplification of rDNA followed by next-generation sequencing has given good results in studies ...
متن کاملMicrobial diversity of marine sponges.
The recent application of molecular microbial ecology tools to sponge-microbe associations has revealed a glimpse into the biodiversity of these microbial communities, that is considered just 'the tip of the iceberg'. This chapter provides an overview over these new findings with regard to identity, diversity and distribution patterns of sponge-associated microbial consortia. The sponges Aplysi...
متن کامل